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Abstract

In this study, the theoretical analysis of a three-dimensional transient piezothermoelasticity problem is developed
for a functionally graded rectangular plate bonded to a piezoelectric plate due to partial heat supply. In this
analysis, temperature distribution has a dependence on time, while the inertia term is ignored. Assuming the
functionally graded rectangular plate has nonhomogeneous thermal and mechanical material properties in the
thickness direction, the three-dimensional temperature in a transient state and three-dimensional transient thermal
stresses of a simple supported plate for functionally graded material are analyzed by introducing the theory of
laminated composites as a theoretical approximation. By using the solution for a functionally graded plate and the
exact solution for piezoelectric plate of crystal class mm2, the theoretical analysis of three-dimensional transient
piezothermoelasticity is developed for a simply supported combined plate. As an example, numerical calculations are
carried out for a functionally graded rectangular plate made of zirconium oxide and titanium alloy, bonded to a
piezoelectric plate of a cadmium selenide solid. Some numerical results for the temperature change, the
displacement, the stress, electric potential, and electric displacement distributions in a transient state are shown in
figures. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Elasticity; Thermal stress; Functionally graded material; Piezoelectricity; Rectangular plate; Three-dimensional problem;
Transient state

1. Introduction
In recent years, nonhomogeneous materials such as functionally graded materials (FGM) have been
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developed as new material that is adaptable for a super-high-temperature environment. FGM are made
of a mixture with arbitrary composition of engineering ceramics and light metal, and the volume
fraction of each material is changed gradually. Thus, it is possible to change the thermal stress
distribution by the control of the volume fraction of these two materials. And it is well-known that
thermal stress distributions in a transient state can show large values compared with the one in a steady
state. Therefore, the transient thermal stress problems for these nonhomogeneous materials become
important and there are several analytical studies concerned with these problems. One-dimensional
transient thermal stress problems for nonhomogeneous plate were reported (Sugano, 1987; Obata and
Noda, 1993; Tanigawa et al., 1996). As a study of three-dimensional problem, we recently analyzed the
three-dimensional transient thermal stress problems for a nonhomogencous hollow circular cylinder
(Ootao et al., 1995a) and nonhomogeneous hollow sphere (Ootao and Tanigawa, 1995b) by introducing
the theory of laminated composites as an approximation.

On the other hand, piezoelectric materials have coupled effects between the elastic fields and the
electric field, and have become of major interest lately as the functional materials such as actuators or
sensors (Rao and Sunar, 1994). It is possible to make a system of intelligent composite materials by
combining these piezoelectric materials with structural materials. As a result, several analytical studies
concerned with piezothermoelasticity of intelligent composite materials were reported. For example,
Tauchert (1992) and Noda and Kimura (1998) treated the response of a thin fiber-reinforced composite
plate with a piezoelectric plate. Ashida et al. (1996) treated an inverse piezothermoelasticity problem of
an isotropic plate with a piezoelectric plate. Ashida et al. (1997) and Choi et al. (1997) treated the
control of thermally induced elastic displacement of an isotropic plate with a piezoelectric plate. The
reports concerned with intelligent FGM are few. So far as we know, Qiu et al. (1994) treated a
piezothermoelasticity problem of FGM beam with a piezoelectric layer. However this problem is
analyzed using finite element method.

In the present paper, we analyzed the three-dimensional piezothermoelasticity in a functionally graded
rectangular plate bonded to a piezoelectric plate of crystal class mm2 due to partial heat supply in the
transient state.

2. Analysis

We now consider the functionally graded rectangular plate to which a piezoelectric plate of crystal
class mm2 is perfectly bonded. We assume that the functionally graded plate has nonhomogeneous
thermal and mechanical material properties in the thickness direction and the combined rectangular
plate is simply supported at all edges. As an analysis of FGM plate, the heat conduction problem and
the associated thermoelastic behavior are developed introducing the theory of laminated composites as a
theoretical approximation. In this analysis, temperature distribution has a dependence on time, while the
inertia term is ignored.

3. Heat conduction problem

We consider a functionally graded rectangular plate bonded to a piezoelectric plate as shown in Fig. 1.
The thickness of the functionally graded plate and piezoelectric plate are represented by B and b,
respectively. The lengths of the sides of the combined rectangular plate are denoted by 2L, and 2L,
respectively. We analyze a functionally graded plate as a laminated plate made of » homogeneous layers
with different isotropic material properties. Let b; be the thickness of the ith layer, and coordinate axes
x, y, and z are chosen as shown in Fig. 1. Moreover, coordinate z; represents a local coordinate system
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of ith layer, the origin of which is taken at the bottom side of the ith layer. Throughout the paper, the
quantities with subscripts i =1, 2,...,n and i = n+ 1 denote those for ith layer of laminated plate and
piezoelectric plate, respectively. We assume that the combined plate is initially at zero temperature and
is suddenly heated from the bottom surface by surrounding media, temperature of which is denoted by
the function T,f,(x)g.(y). The relative heat transfer coefficients on bottom and top surfaces of the
combined plate are designated %, and /;, respectively. We assume that the end surfaces of the combined
plate are held at zero temperature. Then, the transient heat conduction equation for the ith layer in
dimensionless form is given as

aT;  _ (0T, N 2T, 9T _— W
= K; — - = o 1l=1,...,n

a7 axr 9yt 9z

oT, _ 9*T, _ 9*T;, _ 0°T; .

97 :Kxa)_c2 K}'aﬁz R BZ?; i=1l+n (2)

and the initial and thermal boundary conditions in dimensionless form are taken in the following forms:

7=0; T,=0; i=1,....,(a+1) (3)
i} aT, - N
5 =0; 8—511 — H,T = —H, T fu($)ga(7) )
z
A
2L
Piezoelectric
b /Plate
0
n:l ’,’ 4 Y y
B )
V=
\ XF_ 2,
]
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Qz
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ST >
Tafa(X)ga(y)
l-x rLy e LX’LY

Fig. 1. Analytical model and coordinate system.
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Zi=bi, Zj1 =0, Ti=Tyr; i=1,...n (%)
e =T - aT; .
zi=b; Zi1=0; iti—_zﬂr,zﬂ_—ﬂ; i=1,....n=1) (6)
0z; 0Ziy1
- aT, - oT,
En = bna EnJrl = 0’ j~1‘n_-n = ;er _Vl+1
82,1 82n+1
) - AT, -
Zap1 = b; L Hy Ty =0 )
Zn+1
X=+Ly T;=0; i=1,....(n+1) (®)
y=+L; T,=0; i=1,....n+1) ©)

In expressions (1)—(9), we have introduced the following dimensionless values:

I (T, Ty, Tp) - - N (Lo Ly,bib)y  _ ___ (%y.z,z))
(Tia Ty, Tb) = ft;, (LX, L}” bi, b) = f’ (X,y, 2, Zi): T
i 3 o / is 2'Z t
i) = C )z (i) = BB B = (b B (10)
Ko )L[O B

where 7} is the temperature change of the ith layer; x; and x(k = x, y, z) are thermal diffusivity; A, and
A= are thermal conductivity; ¢ is time; and Ty, ko, and A, are typical values of temperature, thermal
diffusivity and thermal conductivity, respectively. Moreover, the relation between the local coordinate z;
and the global coordinate z is given as follows:

i—1
F=%+ ) b, (11)
p=I

For the sake of brevity, we introduce the following symmetric conditions for the temperature functions
f«(x) and g,(y) without loss of generality:

Jl=3) =1(%),  gu(=7) = gu(i) (12)

To solve the fundamental equations (1) and (2), we introduce the finite cosine transformations with
respect to the variables x and y and Laplace transformation with respect to the variable t. Performing
these integral transformations under the conditions (3), (8) and (9), we obtain

b

dZT_ 2 =
Zj
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&’7, 1 a*
e (L X V A S B (14)
K-

where the symbols (7),(7) and (*) imply the integral transformations with respect to the variables, X, j
and 7, and the parameters of the transformations are denoted by ¢, s and P(= —®?), respectively. And ¢
and s represent the root of the equations

cos gL, = 0, cos sl:y =0 (15)

The solution of Egs. (13) and (14) is

lT’_‘ _ [ Aicosh BZ; + Bsinh §Z; (16)
i Ajcos y;Zi+ Bisiny,Z;; i=1,...,(n+1)
where
2 2
ﬁ?:-(a_)——qz—s2> ifi:l,...,nanda_)——qz—s2<0
K; Ki
2 2
yfza_)——qz—sz ifi:l,...,nanda_':——qz—sz>0
2 ki —ies?
ﬁf:_w ifi:n+1and(wz—fquz—fcysz)<0
K
2_ = 2 = 2
yfzw ifi=n+1and (coz—fquz—fcvsz)>0 (17)
K- :

and A4; and B; are unknown constants determined from the boundary conditions. Substituting Eq. (16)
into the boundary conditions in the transformed domain from Egs. (4)—(7), the constants 4; and B; can
be determined making use of Cramer’s formula. Then Eq. (16) is

1, - _
ﬁ(Aicosh BiZi + Bisinh f,z;)

*

>

]
[

1 (18)
PA (/‘L‘COS 7iZi + Bisin "/ifi)

where A is a determinant of 2(n + 1) x 2(n + 1) matrix [ay], and the coeflicients A; and B; are defined as
the determinant of the matrix similar to the coefficient matrix [ay/], in which the (2i — 1)th column or
2ith column is exchanged by the constant vector {c;}. The nonzero element a;; and ¢; among the
coefficient matrix [ay;] and the constant vector {c;} are given as follows:

ann = —H,, ap = {'Bl
al

@i, 2i-1 = {COSh . @i, 2i = { o

. @i, 2i41 = —1
cos p;b; sin y;b; o
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;l,iﬁ-sinh [f-b_[ Z,,-ﬁcosh ﬂ»l;i .
Wiy, 2im1 = L T i, = 1 M S i=1,...,n
2i+1, 2i—1 { —}y,,yl-sin iji 2i+1, 2i in'))iCOS ij[
—it, i+1ﬁi+1 . _)vtzﬁn-&-l
A2jt1, 2i42 = - ji=1,... ,(n - 1), op+1, 2n42 = -
—A, i+17i41 _)~12Vn+1
Hj, cosh ﬁnJrlb + ﬁnJrISinh ﬂnJrlb Hjsinh ﬁn+1b + ﬁn+1005h ﬁnJrlb

Aop42, 2n4+1 = s g2, 2m42 =

HbCOSVn_Hb — Vutt sin yn-&-lb Hb sin Vn-Hb + Vn+1€0S Vn-‘rlb

1 = —H Tof (0)8.(5) (19)

In Eq. (19), the upper part of elements ay corresponds to the case of w?i;—¢*>—s><0 or
@ — kKvq® —Kys? <0, and the lower part to the case of w? k;—¢> —s> >0 or w? — kyq® — Kps* > 0.

Using the residue theorem, we can accomplish the inverse Laplace transformation on Eq. (18). The

temperature solution 7; are given by the summation of the residue. As the single-valued poles of Eq.
(18) correspond to P =0 and the roots of, A =0 the residue for P =0 gives a solution for the steady
state and the summation of residue for A = 0 gives a solution for the unsteady state. Accomplishing the
inverse finite cosine transformations, the temperature solution 7; can be expressed as follows:

T, = ZZ [jicos grxcos sy, i=1,....(n+1) (20)

m 2exp< — wfr

) (/L-cosh Biizi + B;sinh ﬁ,-ﬁ,-)

B(A,-cosh PriZi + B;sinh pk/z") * oA (@)

Jj=1
o0 2exp( — wjzr)

+ 7
;A (w))

(/J—l,-cos ViZi + B;sin y[,ii> (21)
Jj=m+1

and in Eqgs. (20) and (21), gk, s1, A'(w)), py are

_Q@k—Dr _ QI-Dn
T 2L, T 2L

=+ +sh i=1,...n
=\ (Rxqp +icys7) /i i=n+1 22)

and o; represent the jth positive roots of the following transcendental equation

qk 5 A/(a)j) = dA/dw|w:w,

A(w) =0 (23)
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and the condition for the eigenvalue w; is given as

W <W) <+ <Oy < fc,—(q,%,+slz)<wm+1 <---ifi=1,...,n

W <Wy < - < Wy <,/fqui+kysf <Opr) < -+ ifi=n+1 (24)

Moreover, D is a determinant of 2(n+ 1) x 2(n 4+ 1) matrix [ey], and the coefficients /]i and Bi are
defined as determinants of the matrix similar to the coefficient matrix [es], in which the (2i — 1)th
column and 2ith column are each replaced by the constant vector {c;}. The nonzero elements ¢;; are

ey =—H,, en = py

e 2i—1 = cosh pybi, ey 2 = sinh pyb;, e 211 = —1

€2it1, 2i-1 = AiPSinh pybi, sy, 20 = Aipgcosh pybis i=1,....n

€2i+1, 2i42 = _j-t. Py =1, ,(n -1
€41, 2042 = _/:erpkly €42, 2n+1 = Hpcosh Pk/l; + py,sinh pkll;
Cans2, 42 = Hysinh pyb + py,cosh pyb (25)

4. Piezothermoelasticity problem

We now develop the three-dimensional analysis for transient piezothermoelasticity in the simply
supported functionally graded rectangular plate bonded to a piezoelectric plate. We introduce the
following dimensionless values.

_ Okii - (Bkli> Vi)~ - - (i, vi, i)
Okli = — Eklis Vili) = ————= > is Vis P A ———
kli 20 YoTo ( klis /k/z) %0 To (ai, vi, Wi) 2 ToB
_ . E _ D. _
Bo= X = &, Ey = —k|d1|, k= = il
oo Yy oo To o Yo Told| ogToB
_ 991 - Nkt — Dz 3 Ai - 13
€kl = 577> El— = T M T o i — N 26
Yoldil” "™ ol 7T o Yoldi] Yo T, 26)

where oy i1s the stress component, & is the normal strain component, y; is the shearing strain
component, (u;, v;, w;) are the displacement components, oy is the coefficient of linear thermal expansion,
Cy 1s the elastic stiffness constant, Ej is the electric field intensity, Dy is the electric displacement, ¢ is
the electric potential, ey is the piezoelectric coefficient, #,; is the dielectric constant, p. is the pyroelectric
constant, d; is the piezoelectric modulus and oy and Y, are the typical values of the coefficient of linear
thermal expansion and Young’s modulus of elasticity, respectively. And 4; and y; are Lame’s constants.
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In the case of FGM plate, the stress—strain relations for the ith layer are expressed in dimensionless

form as follows:

(_7xxi Z,‘ + 21/_!,' /ju,' Zvi 0 0 0 Exxi 56,-2_—',‘

6_‘;},-1' &-i /:Ll' + Zﬁl %i 0 0 0 éyyi &iTi

2z Ai Ai Ai+2m; 0 0 0 & — o T; 1 9

— = ! _ =1,..., 7

Fyei 0 0 0 B0 0| )7 : " @7

6-zxi 0 0 0 0 ,l_li 0 ?z.xi

6—xyi 0 0 0 0 0 ‘I_li '?xyi
In the case of the piezoelectric plate, the stress—strain relations are expressed in dimensionless form as
follows:

Oxxi Ci Co Gz 0 0 0 Bavi — O T 0 0 ey

6yyi C_‘lz (;22 q23 0 0 0 Eyyi - &y Ti 0 0 532 E

&z:i — C13 C23 C33 0_ 0 0 Ezzz - &sz _ 0 0 533 Er .

6'yzz‘ 0 0 0 C44 0_ 0 7_)};2,‘ 0 6_’2 0 E—,l ’ (28)

6:)([ 0 0 0 0 C55 0_ )_)ZX,- él 0 0 :

T i 0 0 0 0 0 Co||7un 0 0 0

i=n+1
The constitutive equations for the electric field are
Dy =57 +inExs Dy =ufy. +imEy, Dz = &18w + &y + &38 + 3Bz + . Tur (29)
The relations between the electric field intensities and the electric potential ¢ are defined by
Ex = _(Z)’ X E_‘y = _(;5,}73 EZ = _(;5, z (30)

where a comma denotes partial differentiation with respect to the variable it follows. If the free charge is
absent, the equation of electrostatics is expressed in dimensionless form as follows:

Dy :+D,;+D.:=0 (31)
The displacement—strain relations for the ith layer are expressed in dimensionless form as follows:

Exxi =Uj 5, Eyyi =Vij> i = Wiz

Vi =i 5+ Vig Dy =ViitWig, Py =i+ wig i=1..,041) (32)
The equilibrium equations for the ith layer are expressed in dimensionless form as follows:

&xxi, i+ 6-xyi, ¥ + 6zxi, z= 0» 6-xyi, i+ 6_\!}'1', ¥ + 6-}'21‘, z = 0

6-zxi,i+6y:i.}_'+6-zzi,f =0, i= 1,,(7’l+ 1) (33)

In the case of FGM plate, substituting Eq. (32) into Eq. (27), and later into Eq. (33), the displacement
equations of equilibrium are written as
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(i + 20, it + + (i, 55 + 4, =) + (2 + l_li)(‘_/i, vHwie)= (37 + 21)T; &

(7 + it;) (it 55 + Wi 3z) + (Vi = +Vio=) + (i + 20 55 = (32 + 208) % T 5

(i + ) (i1, % + Vi, 52) + (W 5 + 91 55) + (G + 20) %5 = = (34 +201)%:Th 5 i=1,...n (34)

In the case of the piezoelectric plate, substituting Eqs. (30) and (32) into Eq. (28), and later into Egs.

(31) and (33), the governing equations of the displacement components and the electric potential ¢ in
dimensionless form are written as

Chiitns1, 5 + Cositns1, 75 + Cssilns1, = + (Cia + Co6)Vnsa, v+ (Cis + Cs5) s, = + (@31

+ 515)‘2’, == (éll&x + Ciatty + 513&_7) Toy1, x
(Ces + Cr1a)itpsr, o+ CoVut. 5= + CoaViyt 55+ CaaVuy 1, =

+(Co3 + Cag) Wy, 72+ (e + 524)(;5, 7= (élzo_tx + Codty + 6235&) Tos1, 5

5
(35)
(613 + Css)ﬁn+1, =+ (644 + 623)‘_/n+1,y_z + Cssﬂ’n+1, %

+ CaaWny1, 77 + (633 Wit = + (C15)h, w5 + Eud, Wt &3 == (CIS&X + Cosy + éss@) Toi1, 2
(15 + €31 )iyt1, 7 + (24 + €32 WVp1, 37 + C15Wit 1, 3%

T+ e Wi, 35 T €33Wntl, zz — ’71145, ¥ ’722@", T N3¢ == —p.Tay1,

If the bottom and top surfaces of the combined plate are traction free, and the interfaces of each layer
are perfectly bonded, then the boundary conditions of bottom and top surfaces and the conditions of
continuity at the interfaces can be represented as follows:

Up=1ty1, Vi=Vigl, Wi=wWiy1; i=1,....n

En+l - b; 62:, n+l = 0, 62,\‘, n+l = 0, 6'yz, n+l = 0 (36)
The boundary conditions in the thickness direction for the electric field are expresses by

EnJrl:O; Q?):O

(37)
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We now consider the case of a simply supported plate and assume that the end surfaces of piezoelectric
rectangular plate are electrically grounded. The boundary conditions are given as follows:

X=+4Ly Guwi=0, =0, w;=0, ¢$=0

j=+L; &,,=0, =0, w;=0, ¢=0 (38)

The boundary conditions (38) are satisfied automatically if the displacement components and electric
potential are given the following forms:

=30

k=1

=
Il

Uecii(Zi) + Upira(Z;) |sin gixcos 5,3

P%

—
Il

1

=
Il

00 00
ZZ clkl(z ) + Vplk/(zl)]cos qAXSIU é/y

k=1 I=1

~

[Weiri(Zi) + Wyiri(Zi) |cos greos sip; i=1,...,(n+1)

v
M2

=
Il
—
I
—_

[Peri(Zri1) + Ppri(Zny1) ] c0s grXcos s;3 (39)

v
2

=~
Il

1

—
Il

1

In expressions (39), the first term of right-hand side shows the homogeneous solution of Eq. (34) or Eq.
(35) and the second term of right-hand side shows the particular solution of Eq. (34) or (35).

In the case of FGM plate, U.yxi(Z;), Veri(z;) and W y(z;) are given by the following expressions
(Pagano, 1970):

Ueina(2i) = (a(]ll) + 0(311)21 + a51 ; )CXP(PME!‘) + (azl + aglll)zl + am )exp( = PriZi)

Veira(Zi) = <a(112) +dzi+ a(5’2)22>exp(p,df,-) + (a(zlz) +dpzi+ a(éz)zz)eXP( = PiiZi)

W iwi(zi) = (a(l’; + a({gzl + aglgzz)exp(pk,é,-) + (a(2’3) + ag’;)z, + a(6’3)22>exp( —puzi); i=1...n (40)

In the above expressions (40), a,(f,) are unknown constants and the following relations among these
constants exist

aS, _agl)_O; [=1,2,3

0 _ St ) (l) Pri (i) M _ St () W) _ Pkl ()
ay, = —ay;, =——ay, a al, a —a
32 Ik 31 33 Ik 31 42 — qk 41 43 — qk 41
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0 ar (i + i) < ) 0] 0)
ayy = —=————~\qkay; + 814y + prag;
(i + 301;) ’

a9 =

ar (i + i) ( 0
4= 4)

(i) @Y.
> — qidyy + Sidyy — pk/a23>, i=1....n
praCi+ 31

4387

(41)

In the case of the piezoelectric plate, U.w(Zi), Veiri(Zi), Weit(Z:) and @u(Z;) are given based on

Heyliger’s solution (Heyliger, 1997). Assuming that

{UeiGGo), Vet Gi)s Weirt(Zi)s Peki ()} = (U % Vos Wy @) )exppzi); i=n+1

(42)

and substituting the homogeneous solution into the homogeneous form of Eq. (35) leads to the next

equations.
Ay = Cssp®> A Ausp Awap Uy 0
Arn Ay — Cup® Ayp Anp Vie L]0
—Aizp —Axp Azy — C3p?  Azg — ex3p? ”{)gkl 0
—Ap —Anup Azg —e3p* Ass+ii33p? D 0
where

A = Cnq; + Cess?, A = (Cio+ Cos)qsis Az = (Cis + Css)qr,  Ara = (€31 4 15)qx

Ay = Cesqh 4 Caas?, Ay = (Coz + Caa)si,  Azg = (@32 4 @24)s1, Az = Cssqh + Caus?

Az = e15q; + e8], Asa = — (1195 + 1257)

(43)

(44)

Non-trivial solutions of Eq. (43) exist if the determinant of the coefficient vanishes, which leads to the

eighth-order equation of p. This equation can be written as the fourth-order equation
e +drt+er+f=0
where

r=p*

| - - - - ) . -
c= Z{’I33[C44(A11C33 - Aﬂ) + C55<A33C44 + A2 Cy3 — A§3>] +&,(411Caq + A Css)

+ 2833[ Cs5(A34Cas — Ar3Ang) — A13A14Cas| + C3[Css (A3, — A14Caa) + A%4(_744]}

(45)
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1. - - -
d= Z{n33 |:A11A§3 + A%3A22 — 241243413 — A33(A11C44 + A22C55) + C33(A%2 - A11A22)]
+ 2853 (A13 A0 A1g + Ay Axs Ay — A1y A3 Arg — A1 ApgArs — Ay AsaCas — A A3aCss) + 835(41,

— Ay A2) + Css (2A23A24A34 + A Ay Cs3 + A33A44Cay — A3y Agy — A3, A3 — A§4é44>

+ C_44(A11A44(_?33 — AL Ass + 2413414 A3 — A%4A33> + (A1342 — A14A23)2}

1 . ) _ _ _
e= Z{(A”Azz — A}) (133433 + 2833434 — C33Aua) + (43, — A33444) (Css Az + CaaAyy)
+ 2[A12A424(A13A34 — A14A33) + A2 A23(A14A3s — A13Aas) — A3a(A11 A3 Ass + A13A22A414) |

+ A3 (A1 A5y + A, An) + Asa(AT Az + A1143;) }
1
f= Z(A34A44 — A3,) (41142 — 4,)

A= —(_?55644<(_733ﬁ33 + é§3) (46)

From Eq. (45), there might be four real roots, two real roots and one pair of conjugate complex roots,
or two pairs of conjugate complex roots.

Case 1 (Real roots for r). Given N real roots for r, U.ii(Z;),Veiri(Zi), Weiri(Zi) and @y(z;) are given by
the following expressions:

N N
UeaZ) = Y Uk, VewZ) =Y LiasUnas(Z)
7= 7=

N N
Wer(Z) = Y MuyWisrZ),  PaaE) = Y NeyWin(E): i=n+1 (47)
=1 =

where

Unir(zi) = FruyCray(Zi) + GrisSis(Zi)

Wiin(Zi) = GriCras(Zi) + oty FrasSkir(Zi) (48)
1 m

Ly = D—(fnmj + oarfionts + £i3), My = D—J(fzﬂﬂj + ogrifoams 4 f23)
7 7

my
Ny = D—(f31m§ + aafants + f33), Dy = apygim$ + gam’y + apgygam’ + g (49)
¥
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Cry(Zi) = cosh(myz;), Spy(Z;) = sinh(myz;), my=/rs, oy =1 ifr;>0

Cuip(z;) = cos(myz;), Spy(zi) = sin(myz;), my= ./ —r;, opy=—1 ifr; <0 (50)

Here Fj;; and Gy are unknown constants. Expressions for the coefficients in Eq. (49) are given in
Appendix A.

Case 2 (Complex roots for r). If the complex root for r is expressed by r; = a;+jf; where j=+/—1,
then the final roots for p are

ps = F(as+jby) (51)
where
ay= (oc% + ﬁ3)1/4cos|:; (tanlij)}, b; = (oc% + ,33)1/4sin|:;(tanl ib):| (52)
J J

Given J' pairs of complex roots for r, U.ii(z;), Veini(Zi), Weiri(Zi) and ®(z;) are given by the following
expressions:

7’ g’
UeaZ) = Y UG, VewiE) =Y Viar(Er)

J=1 J=1

7 7
Wei(zi) = ZWMJ(EJ, Di(zi) = Z‘Pku(ff); i=n+1 (53)
= =

where

Usiy(Z:) = Crrexp(ayZ;)cos byZi + Cayexp(ayZ;)sin byZ; + Caexp( — ajZ;)cos byZ; + Capexp( — ayZ;)

X sin byz;

Viir(Zi) = Cryexp(asz;)(I'1ycos byzi — Qyysin byz;) + Corexplasz;)(Qisc0s byz; 4+ I'yysin byz;) + Carexp(

— aJE[)(F]JCOS bJE[ + Qlein bJEi) + C4JCXp( — aJEi)( — Q]JCOS bjf,‘ + F]Jsil’l [JJE,')

Wi(Zi) = Cryexp(aszi)[(aslay — byQay)cos byzi — (byl'ay + asQ2a)sin byz; | + Casexp(asz)[(bsI 2y
+ a;Qa7)cos byZi + (a;lay — byQay)sin by | + Cjexp( — asz)[(bsQay — asTay)cos bz
— (byT 2y + ayQyp)sin byzi| 4+ Cagexp( — ayz)[(bylay + a;220)c08 byZi + (— a;lay + a;2)

X sin bJZi]
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Driy(Z7) = Cryexplaszi)[(asTss — byQay)cos byz; — (byI3y + a;Qap)sin byZ; | + Coyexplasz;)[(biT 3y

F]J:RB

Qi =1,

+ ayQ37)c0s byZi + (asl '3y — byQ3,)sin byZ; | + Cayexp( — asz)[(bsQs; — asl'35)cos byZ;

— (byI3y + a;Qap)sin byZ;i| + Cagexp( — ayz)[(bsI '3y + a;Q23,)c08 byzi + (— asl'sy

+ bj.Q3j)Sin iji]

b
D(pr)

1

| D)

(f”pj +f12p3 +f13) |PJ=fl/+,i/71

(fup’s + fops+ 1) pr=a,+jbs

D(ps) = g105 + gap} + 8307 + &

Here C;;—Cy4y are unknown constants.

(54)

I=1,2,3

(55)

On the other hand, U,ui(Z;), Vpici(Zi), Wyii(zi) and @,(Z;) of the particular solutions are obtained as

follows:

m o0
Upiri(zi) = Arigicosh pyz; + Aziggsinh pyz; + Z(A(Sj,%dcosh Byzi + Agi),‘vlsinh /3;75,-) + Z (Ag’[)k,cos ViZi

J=1

J=m+1

+ A% sin 7,7

m

o0
Vipici(Zi) = Brikicosh pyZi + Bojgsinh py,z; + Z(B 0 cosh Bjzi+ B {)sinh ﬁyi’) + Z (B ¥ cos ViZi

j=1 Jj=m+1
+ Bg,.)k,sin yl-jE,)
Wpii(Zi) = Criicosh py,z; + Copgsinh pyz; + Z(C g’i)k,cosh ByZi+ Cf(,%dsinh ﬁ,ﬁ,—) + Z (Cg’[)k[
j=1 Jj=m+1

X €08 y;Z; + Cgi)k,sin y,:,-Zi>; i=1,....,(n+1)

m

Dpri(Zng1) = Digicosh pyzyi1 + Daygsinh pryz, g1 + Z
J=1

[Dg]/leOSh Bur, Zner + Dy,
(56)

o0
; z 0] . z () o z
X sinh ﬂnJrl,jz,,_H] + E [Dsklcos Vatt, jZnt1 + DS Y,y iZngi
J=m+1
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Fig. 2. Variation of volume fraction V..

In the case of FGM plate, substituting Egs. (20), (56) and the second term of right-hand side of Eq. (39)
into Eq. (34), and later comparing the coefficients of functions with regard to Zz; res ectlvel the six
groups of 51mu1taneous linear equations for (Aius, Biixs, Coiki), (A2ikts Boikts Crirt)s (AMZ, B(3]z/cl’ Cf{l;d
(A41kl’ Bf{l;d, Cg’lll) (Aszu’ B(S’Jd, Cgl}d) and (Aélzl, Bgl,d, C3y)) are obtalned Solving these six groups of
simultaneous linear equations, the constants Ay, Ao, - ..,C 25, and ka/ (i=1,...,n) can be obtained.
And, in the case of the piezoelectric plate, substituting Egs. (20), (56) and the second term of right-hand
side of Eq. (39) into Eq. (35), and later comparing the coefficients of functions with regard to z,
respectively, the six groups of 51mu1tdneous linear equdtlons for (Al,k,, Biixi, Cairt, Dar), (Azikss Boiki,
Cllkla lel) (A3z;rl’ 3(3/13&1’ CE{I}(/’ 4kl) (A41kl’ BE(I/(]’ Cgllil’ 3k/) (ASIk/’ B(Sll;cl’ Cgl}(/’ gk)l) and (Agl;cl’ Bglzl’
Ciin g.’k)l) are obtained. Solving these six groups of snnultaneous hnear equations, the constants A,
Aoikts -+ s ngkl’ Cg}d (i=n+1), Dy, Dy, Dg’,f,, Df{;l, D(S’k), and D ¢ can be obtained. Then, in the case
of FGM nplate, the stress components can be evaluated by substituting Eq. (39) into Eq. (32), and later
into Eq. (27). In the case of the piezoelectric plate, the stress components and the electric displacements
can be evaluated by substituting Eq. (39) into Egs. (30) and (32), and later into Egs. (28) and (29).

Then the unknown constants in Egs. (40), (48) and (54) are determined so as to satisfy the boundary
conditions (36) and (37).

5. Numerical results

As there are many cases like the thermal, elastic and electric constants for crystal class mm2 don’t
become clear in the literature, we consider the piezoelectric material of a cadmium selenide solid
exhibiting crystal class 6mm which is quoted at the papers of Ashida et al. (1996, 1997). Furthermore,
we consider the FGM composed of zirconium oxide (ZrO,) and titanium alloy (Ti—-6Al-4V) which is
anticipated as a high-temperature-resistant structural material for thermal stress relaxation in the field of
aerospace. It is assumed that the volume fractions of the ceramic phase V. and the metal phase V,, are
given by the relations

v =ML L =1 rer osis 657)

where M is a parameter. And, numerical results are presented for the following values.
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Fig. 3. Temperature change for parameter M = 1. (a) variation on the x-axis (y = 0, Z = 0), (b) variation in the thickness direction
(x=0,y=0).

H,=H,=50, T,=10, L,=L,=30, h=0.1,0.2,0.3
fu®) = (1 = /) HE — 7)), @) = (1 - /73)H(F — 171)

Xo=10, jo=10, M=1,1/44 (58)

where H(x) is Heaviside’s function. The variation of the volume fraction V. of the ceramic with the
parameter M is shown in Fig. 2. The material constants for zirconium oxide are taken as,

J;=178W/mK, x=1.06x10"°m?/s, a=87x10°1/K, Y=1164GPa, v=0.33 (59)
for titanium alloy,

i =62W/mK, xk=261x10"%m’/s, a=89x10"°1/K, ¥Y=1058GPa, v=0.3 (60)
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Fig. 4. Thermal displacement w for parameter M = 1. (a) variation on the x-axis (y = 0, Z = 0), (b) variation in the thickness direc-
tion (x =0,y =0).

and for cadmium selenide (Ashida et al., 1997),

ay = o, =4.396 x 1070 1/K, o, =2.458 x 107°1/K, Cjj = Cy» =74.1GPa

Ci2 =452GPa, Cj3=Cy;3 =2393GPa, (33 =83.6GPa, Cy = Css=13.17GPa

Ceo = 14.45GPa, e3 = e = —0.16 C/m?, e33 = 0.347 C/m?,

e1s = ey = —0.138 C/m?, 1y, =11y = 8.25 x 1071 C?/Nm?, 533 = 9.03 x 107" C?/Nm?

p-=-294x10"°C/m’K, dj =-3.92x10712C/N
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Fig. 5. Variation of the thermal stress &), for parameter M =1 (x =0, y = 0).
Sy = Ay = 8.6 W/mK, A = 1.54, (61)

Since the coefficients of thermal conductivity for cadmium selenide could not be found in the literature,
the following values are assumed:

Ky =1, =328 x 10 m?/s, k.= 1.5k, (62)

The typical values of material properties such as kg, 4,0, %9 and Y, used to normalize the numerical
data, are based on those of zirconium oxide. To estimate the material properties of FGM, we applied
mainly the law of mixture proposed by Kerner (1956a, 1956b), which was derived based on the
assumption that there is a granular phase embedded in a matrix phase. However, the details of
expression for the law are omitted here for brevity. For numerical calculation, we take n = 10 as the
number of hypothetical layers in the FGM plate. B

Figs. 3-9 show the numerical results for M =1 and b = 0.1.The variations of temperature change and
thermal displacement w on the x-axis (y =0, z = 0) are shown in Figs. 3(a) and 4(a). The variations of
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Fig. 6. Variation of the thermal stressa., for parameter M =1 (x =0, y = 0).
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Fig. 7. Thermal stress ., for parameter M = 1. (a) distribution in a steady state (y =0, 7 = c0), (b) variation in the thickness
direction (x = 0.8, y = 0).

the thickness direction of temperature change and thermal displacement w at the midpoint of the plate
are shown in Figs. 3(b) and 4(b). As shown in Fig. 3, the temperature rises as the time proceeds and is
maximum in the steady state, and the temperature rise can clearly be seen in the heated region. As
shown in Fig. 4, the absolute value of thermal displacement w rises as the time proceeds and shows the
maximum value in the steady state. Fig. 5 and Fig. 6 show the variations of the normal stress 7,, and
g at the midpoint of the plate, respectively. As shown in Fig. 5, it can be seen that discontinuity occurs
on the interface between FGM plate and piezoelectric plate. As shown in Fig. 6, it can be seen that the
stress variation becomes substantial with the progress of time and maximum tensile stress occurs in a
transient state. Fig. 7 shows the distribution of the shearing stress a.,. The distribution on the cross-
section of y =0 in the steady state is shown in Fig. 7(a) and the variation on the cross section (x =
0.8,y =0) in a transient state is shown in Fig. 7(b). Fig. 7(a) shows that the maximum stress occurs
near X = 0.8 inside of plate. From Fig. 7(b), it can be seen that the shearing stress .. shows the
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Fig. 8. Variation of the electric potential for parameter M = 1.

maximum value at z=0.15 in a transient state. Figs. 8 and 9 show the variations of the electric
potential and the electric displacement D, on the top surface (7 = 0, Z = 1.1), respectively. From Figs. 8
and 9, it can be seen that the variations become substantial with the progress of time and maximum
value occurs in a transient state.

In order to examine the influence of the parameter M of the material composition, the variations of
temperature change, thermal stress .., thermal stress o.,, and electric potential for » = 0.1 are shown in
Figs. 10-13, respectively. From Fig. 10, it can be seen that the temperature change on the heated side of
the plate is decreased when the parameter M reduces. As shown in Figs. 11 and 12, it can be seen that
the maximum values of the normal stress o.. and shearing stress 7., and their distributions are
substantially changed when the parameter M is changed. Then, it can be seen from Fig. 13 that the
maximum values of the electric potential are decreased when the parameter M reduces.

=== £=0.01
0.005 | / D — - - 7=0.05] 1
x ceso - —-7=02

Fig. 9. Variation of the electric displacement D, for parameter M = 1.
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Fig. 10. Influence of parameter M on temperature change (x =0, y = 0).

Fig. 14 shows the influence of thickness b of piezoelectric plate on electric potential on the top surface
(y =0,z =1+0b). Then, it can be seen from Fig. 14 that the value of the electric potential is increased
when the thickness b increases.

Finally, in order to assess the influence of the functional grading, the numerical results for the
homogeneous plate composed of zirconium oxide and the piezoelectric plate composed of a cadmium
selenide solid for b = 0.1 are shown in Fig. 15. The variations of the thickness direction of temperature
change and normal stress .. at the midpoint of the plate are shown in Fig. 15(a) and (b), respectively.
The variation of shearing stress 6., on the cross section (x = 0.8, y = 0) is shown in Fig. 15(c). From
Figs. 11, 12, 15(a) and (c), it is possible to decrease the maximum values of normal stress o.. and
shearing stress 6., in a transient state by the functional grading.
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Fig. 11. Influence of parameter M on thermal stress 6., (x =0, y = 0).



4398 Y. Ootao, Y. Tanigawa | International Journal of Solids and Structures 37 (2000) 4377-4401

002 1 — ¢ 7
[ —-— M=1/4
[ M=1 oo
001 ------
b}
lo O
-0.01
x=0.8
-0.02 [ ©=0.05 y=0 |
b=0.1
-0.03 |

0 02 04 06 08 1
Y4

Fig. 12. Influence of parameter M on thermal stress o., (x = 0.8, y = 0).
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6. Conclusions

In this study, we analyzed the three-dimensional transient piezothermoelasticity problem involving a
functionally graded rectangular plate bonded to a piezoelectric plate of crystal class mm2 due to partial
heat supply. As an illustration, we carried out numerical calculations for the functionally graded plate
composed of zirconium oxide and titanium alloy, bonded to a piezoelectric plate of a cadmium selenide
solid and examined the behaviors in the transient state for the temperature change, the displacement, the
stress, electric potential, and electric displacement distributions. We conclude that we can evaluate not
only all stresses of the combined plate but also the electric field of the piezoelectric plate quantitatively
in a transient state.

Appendix A

Jfu = Alz(é33ﬁ33 + é§3) — A13(Asiis3 + A2ls3) + A14(A24Cs3 — Ax3é33)

fi2 = —A12(A33i133 — Ca3Aag + 2A434833) — A13(A23 Aag — AraAzs) + A1a(A23 Asg — ArgA33)

fiz = —A(A33Ass — A3,)

for = —A13Caailyy — A14Caass

S = A13(Anifyy — A4aCas + A3,) — A1z (Axilz3 + A2e33) + A (422833 + A34Caq — Ar3 Aoy)

Sz = —A12(A23Aas — A2sAzs) — AnAzaAra + AnAsaArs

it = —A13Cué33 + A14CaaCs

fr2 = A13(Anes; + Caadss — A3 Ans) + A1p(A24Cxz — Anés) + A14(A%3 — AnCy — A33é44)

33 = A(An3 Az — A2aAss) + A1adnAsy — A13A2 A3 (AD)
g1 = C44@3; + C33Cugifss

g2 =133 (A§3 — A33Cay — A22C_'33) — Ané3; + 283 (423424 — A34Cus) + A24CasCs3 — A3,C33

g3 = An(Axiiyy — AsaCay + 2434833) — 2423424 Azs + Aug (/@3 - 644A33> + A3, 433 + A3, Cus

g4 = An(A33444 — A%,) (A2)
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