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Abstract

In this study, the theoretical analysis of a three-dimensional transient piezothermoelasticity problem is developed
for a functionally graded rectangular plate bonded to a piezoelectric plate due to partial heat supply. In this
analysis, temperature distribution has a dependence on time, while the inertia term is ignored. Assuming the
functionally graded rectangular plate has nonhomogeneous thermal and mechanical material properties in the

thickness direction, the three-dimensional temperature in a transient state and three-dimensional transient thermal
stresses of a simple supported plate for functionally graded material are analyzed by introducing the theory of
laminated composites as a theoretical approximation. By using the solution for a functionally graded plate and the

exact solution for piezoelectric plate of crystal class mm2, the theoretical analysis of three-dimensional transient
piezothermoelasticity is developed for a simply supported combined plate. As an example, numerical calculations are
carried out for a functionally graded rectangular plate made of zirconium oxide and titanium alloy, bonded to a

piezoelectric plate of a cadmium selenide solid. Some numerical results for the temperature change, the
displacement, the stress, electric potential, and electric displacement distributions in a transient state are shown in
®gures. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Elasticity; Thermal stress; Functionally graded material; Piezoelectricity; Rectangular plate; Three-dimensional problem;

Transient state

1. Introduction

In recent years, nonhomogeneous materials such as functionally graded materials (FGM) have been
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developed as new material that is adaptable for a super-high-temperature environment. FGM are made
of a mixture with arbitrary composition of engineering ceramics and light metal, and the volume
fraction of each material is changed gradually. Thus, it is possible to change the thermal stress
distribution by the control of the volume fraction of these two materials. And it is well-known that
thermal stress distributions in a transient state can show large values compared with the one in a steady
state. Therefore, the transient thermal stress problems for these nonhomogeneous materials become
important and there are several analytical studies concerned with these problems. One-dimensional
transient thermal stress problems for nonhomogeneous plate were reported (Sugano, 1987; Obata and
Noda, 1993; Tanigawa et al., 1996). As a study of three-dimensional problem, we recently analyzed the
three-dimensional transient thermal stress problems for a nonhomogeneous hollow circular cylinder
(Ootao et al., 1995a) and nonhomogeneous hollow sphere (Ootao and Tanigawa, 1995b) by introducing
the theory of laminated composites as an approximation.

On the other hand, piezoelectric materials have coupled e�ects between the elastic ®elds and the
electric ®eld, and have become of major interest lately as the functional materials such as actuators or
sensors (Rao and Sunar, 1994). It is possible to make a system of intelligent composite materials by
combining these piezoelectric materials with structural materials. As a result, several analytical studies
concerned with piezothermoelasticity of intelligent composite materials were reported. For example,
Tauchert (1992) and Noda and Kimura (1998) treated the response of a thin ®ber-reinforced composite
plate with a piezoelectric plate. Ashida et al. (1996) treated an inverse piezothermoelasticity problem of
an isotropic plate with a piezoelectric plate. Ashida et al. (1997) and Choi et al. (1997) treated the
control of thermally induced elastic displacement of an isotropic plate with a piezoelectric plate. The
reports concerned with intelligent FGM are few. So far as we know, Qiu et al. (1994) treated a
piezothermoelasticity problem of FGM beam with a piezoelectric layer. However this problem is
analyzed using ®nite element method.

In the present paper, we analyzed the three-dimensional piezothermoelasticity in a functionally graded
rectangular plate bonded to a piezoelectric plate of crystal class mm2 due to partial heat supply in the
transient state.

2. Analysis

We now consider the functionally graded rectangular plate to which a piezoelectric plate of crystal
class mm2 is perfectly bonded. We assume that the functionally graded plate has nonhomogeneous
thermal and mechanical material properties in the thickness direction and the combined rectangular
plate is simply supported at all edges. As an analysis of FGM plate, the heat conduction problem and
the associated thermoelastic behavior are developed introducing the theory of laminated composites as a
theoretical approximation. In this analysis, temperature distribution has a dependence on time, while the
inertia term is ignored.

3. Heat conduction problem

We consider a functionally graded rectangular plate bonded to a piezoelectric plate as shown in Fig. 1.
The thickness of the functionally graded plate and piezoelectric plate are represented by B and b,
respectively. The lengths of the sides of the combined rectangular plate are denoted by 2Lx and 2Ly,
respectively. We analyze a functionally graded plate as a laminated plate made of n homogeneous layers
with di�erent isotropic material properties. Let bi be the thickness of the ith layer, and coordinate axes
x, y, and z are chosen as shown in Fig. 1. Moreover, coordinate zi represents a local coordinate system
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of ith layer, the origin of which is taken at the bottom side of the ith layer. Throughout the paper, the
quantities with subscripts i � 1, 2, . . . ,n and i � n� 1 denote those for ith layer of laminated plate and
piezoelectric plate, respectively. We assume that the combined plate is initially at zero temperature and
is suddenly heated from the bottom surface by surrounding media, temperature of which is denoted by
the function Tafa�x�ga�y�: The relative heat transfer coe�cients on bottom and top surfaces of the
combined plate are designated ha and hb, respectively. We assume that the end surfaces of the combined
plate are held at zero temperature. Then, the transient heat conduction equation for the ith layer in
dimensionless form is given as

@ �Ti

@t
� �ki

 
@2 �Ti

@ �x2
� @

2 �Ti

@ �y2
� @

2 �Ti

@ �z2i

!
; i � 1, . . . ,n �1�

@ �Ti

@t
� �kx

@2 �Ti

@ �x2
� �ky

@2 �Ti

@ �y2
� �kz

@2 �Ti

@ �z2i
; i � 1� n �2�

and the initial and thermal boundary conditions in dimensionless form are taken in the following forms:

t � 0; �Ti � 0; i � 1, . . . ,�n� 1� �3�

�z1 � 0;
@ �T1

@ �z1
ÿHa

�T1 � ÿHa
�Tafa� �x�ga� �y� �4�

Fig. 1. Analytical model and coordinate system.
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�zi � �bi, �zi�1 � 0; �Ti � �Ti�1; i � 1, . . . ,n �5�

�zi � �bi, �zi�1 � 0; �lti
@ �Ti

@ �zi
� �lt, i�1

@ �Ti�1
@ �zi�1

; i � 1, . . . ,�nÿ 1� �6�

�zn � �bn, �zn�1 � 0; �ltn
@ �Tn

@ �zn
� �ltz

@ �Tn�1
@ �zn�1

�zn�1 � �b;
@ �Tn�1
@ �zn�1

�Hb
�Tn�1 � 0 �7�

�x �2 �Lx; �Ti � 0; i � 1, . . . ,�n� 1� �8�

�y �2 �Ly; �Ti � 0; i � 1, . . . ,�n� 1� �9�

In expressions (1)±(9), we have introduced the following dimensionless values:

ÿ
�Ti, �Ta, �Tb

�
� �Ti, Ta, Tb�

T0
,
�

�Lx, �Ly, �bi, �b
�
�
ÿ
Lx, Ly, bi, b

�
B

, � �x, �y, �z, �zi � � �
x, y, z, zi �

B

� �ki, �kk � � �ki, kk �k0
; k � x, y, z,

ÿ
�lti, �lz

�
� �lti, lz�

lt0
, t � k0t

B2
, �Ha, Hb� � �ha, hb�B �10�

where Ti is the temperature change of the ith layer; ki and kk�k � x, y, z� are thermal di�usivity; lti and
ltz are thermal conductivity; t is time; and T0, k0, and lt0 are typical values of temperature, thermal
di�usivity and thermal conductivity, respectively. Moreover, the relation between the local coordinate �zi
and the global coordinate �z is given as follows:

�z � �zi �
Xiÿ1
p�1

�bp �11�

For the sake of brevity, we introduce the following symmetric conditions for the temperature functions
fa� �x� and ga� �y� without loss of generality:

fa� ÿ �x� � fa� �x�, ga� ÿ �y� � ga� �y� �12�

To solve the fundamental equations (1) and (2), we introduce the ®nite cosine transformations with
respect to the variables �x and �y and Laplace transformation with respect to the variable t: Performing
these integral transformations under the conditions (3), (8) and (9), we obtain

d2 ~̂
T
�
i

d �z2i
�
�
m2

�ki
ÿ q2 ÿ s2

�
~̂
T �i � 0; i � 1, . . . ,n �13�
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d2 ~̂
T
�
i

d �z2i
� 1

�kz

�
o2 ÿ �kxq2 ÿ �kys2

� ~̂
T
�
i � 0; i � 1� n �14�

where the symbols (^),( Ä ) and (�) imply the integral transformations with respect to the variables, �x, �y
and t, and the parameters of the transformations are denoted by q, s and P�� ÿo2�, respectively. And q
and s represent the root of the equations

cos q �Lx � 0, cos s �Ly � 0 �15�

The solution of Eqs. (13) and (14) is

~̂
T
�
i �

�
Aicosh bi �zi � Bisinh bi �zi
Aicos gi �zi � Bisin gi �zi; i � 1, . . . ,�n� 1� �16�

where

b2i � ÿ
�
o2

�ki
ÿ q2 ÿ s2

�
if i � 1, . . . ,n and

o2

�ki
ÿ q2 ÿ s2 < 0

g2i �
o2

�ki
ÿ q2 ÿ s2 if i � 1, . . . ,n and

o2

�ki
ÿ q2 ÿ s2 > 0

b2i � ÿ
o2 ÿ �kxq2 ÿ �kys2

�kz
if i � n� 1 and

�
o2 ÿ �kxq2 ÿ �kys2

�
< 0

g2i �
o2 ÿ �kxq2 ÿ �kys2

�kz
if i � n� 1 and

�
o2 ÿ �kxq2 ÿ �kys2

�
> 0 �17�

and Ai and Bi are unknown constants determined from the boundary conditions. Substituting Eq. (16)
into the boundary conditions in the transformed domain from Eqs. (4)±(7), the constants Ai and Bi can
be determined making use of Cramer's formula. Then Eq. (16) is

~̂
T
�
i �

8>><>>:
1

PD

ÿ
�Aicosh bi �zi � �Bisinh bi �zi

�
1

PD

ÿ
�Aicos gi �zi � �Bisin gi �zi

� �18�

where D is a determinant of 2�n� 1� � 2�n� 1� matrix �akl �, and the coe�cients �Ai and �Bi are de®ned as
the determinant of the matrix similar to the coe�cient matrix �akl �, in which the �2iÿ 1)th column or
2ith column is exchanged by the constant vector fckg: The nonzero element akl and ck among the
coe�cient matrix �akl � and the constant vector fckg are given as follows:

a11 � ÿHa, a12 �
�
b1
g1

a2i, 2iÿ1 �
�

cosh bi �bi
cos gi �bi

, a2i, 2i �
�

sinh bi �bi
sin gi �bi

, a2i, 2i�1 � ÿ1
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a2i�1, 2iÿ1 �
�

�ltibisinh bi �bi
ÿ�ltigisin gi �bi

, a2i�1, 2i �
�

�ltibicosh bi �bi
�ltigicos gi �bi

; i � 1, . . . ,n

a2i�1, 2i�2 �
8<:ÿ�lt, i�1bi�1

ÿ�lt, i�1gi�1
; i � 1, . . . ,�nÿ 1�, a2n�1, 2n�2 �

8<:ÿ�ltzbn�1

ÿ�ltzgn�1

a2n�2, 2n�1 �
8<:Hb cosh bn�1 �b� bn�1sinh bn�1 �b

Hbcosgn�1 �bÿ gn�1sin gn�1 �b
, a2n�2, 2n�2 �

8<:Hbsinh bn�1 �b� bn�1cosh bn�1 �b

Hb sin gn�1 �b� gn�1cos gn�1 �b

c1 � ÿHa
�Taf̂a�q� ~ga�s� �19�

In Eq. (19), the upper part of elements akl corresponds to the case of o2 �ki ÿ q2 ÿ s2 < 0 or
o2 ÿ �kxq2 ÿ �kys2 < 0, and the lower part to the case of o2 �ki ÿ q2 ÿ s2 > 0 or o2 ÿ �kxq2 ÿ �kys2 > 0:
Using the residue theorem, we can accomplish the inverse Laplace transformation on Eq. (18). The

temperature solution
~̂
Ti are given by the summation of the residue. As the single-valued poles of Eq.

(18) correspond to P � 0 and the roots of, D � 0 the residue for P � 0 gives a solution for the steady
state and the summation of residue for D � 0 gives a solution for the unsteady state. Accomplishing the
inverse ®nite cosine transformations, the temperature solution �Ti can be expressed as follows:

�Ti �
X1
k�1

X1
l�1

�Tiklcos qk �xcos sl �y; i � 1, . . . ,�n� 1� �20�

where

�Tikl � 4

�Lx
�Ly

24 1

D

�
�A
0

i cosh rkl �zi � �B
0

i sinh rkl �zi
�
�
Xm
j�1

2exp
�
ÿ o2

j t
�

ojD
0�oj �

�
�Aicosh bij �zi � �Bisinh bij �zi

�

�
X1

j�m�1

2exp
�
ÿ o2

j t
�

ojD
0�oj�

�
�Aicos gij �zi � �Bisin gij �zi

�35 �21�

and in Eqs. (20) and (21), qk, sl, D
0�oj �, rkl are

qk �
�2kÿ 1�p

2 �Lx

, sl �
�2lÿ 1�p

2 �Ly

, D 0�oj � � dD=dojo�oj

rkl �
���������������
q2k � s2l

q
; i � 1, . . . ,n

rkl �
����������������������������������ÿ
�kxq2k � �kys2l

�
= �kz

q
; i � n� 1 �22�

and oj represent the jth positive roots of the following transcendental equation

D�o� � 0 �23�
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and the condition for the eigenvalue oj is given as

o1 < o2 < � � � < om <
����������������������
�ki
ÿ
q2k � s2l

�q
< om�1 < � � � if i � 1, . . . ,n

o1 < o2 < � � � < om <
������������������������
�kxq2k � �kys2l

q
< om�1 < � � � if i � n� 1 �24�

Moreover, D is a determinant of 2�n� 1� � 2�n� 1� matrix �ekl �, and the coe�cients �A
0

i and �B
0

i are
de®ned as determinants of the matrix similar to the coe�cient matrix �ekl �, in which the �2iÿ 1�th
column and 2ith column are each replaced by the constant vector fckg: The nonzero elements ekl are

e11 � ÿHa, e12 � rkl

e2i, 2iÿ1 � cosh rkl �bi, e2i, 2i � sinh rkl �bi, e2i, 2i�1 � ÿ1

e2i�1, 2iÿ1 � �ltirklsinh rkl �bi, e2i�1, 2i � �ltirklcosh rkl �bi; i � 1, . . . ,n

e2i�1, 2i�2 � ÿ�lt, i�1rkl; i � 1, . . . ,�nÿ 1�

e2n�1, 2n�2 � ÿ�ltzrkl, e2n�2, 2n�1 � Hbcosh rkl �b� rklsinh rkl �b

e2n�2, 2n�2 � Hbsinh rkl �b� rklcosh rkl �b �25�

4. Piezothermoelasticity problem

We now develop the three-dimensional analysis for transient piezothermoelasticity in the simply
supported functionally graded rectangular plate bonded to a piezoelectric plate. We introduce the
following dimensionless values.

�skli � skli
a0Y0T0

,
ÿ
�ekli, �gkli

� � �ekli, gkli�
a0T0

, � �ui, �vi, �wi � � �ui, vi, wi �
a0T0B

�ak � ak
a0

, �Ckl � Ckl

Y0
, �Ek � Ekjd1j

a0T0
, �Dk � Dk

a0Y0T0jd1j ,
�f � fjd1j

a0T0B

�ekl � ekl
Y0jd1j , �Zkl �

Zkl
Y0jd1j2

, �pz �
pz

a0Y0jd1j ,
�li � li

Y0
, �mi �

mi
Y0

�26�

where skli is the stress component, ekli is the normal strain component, gkli is the shearing strain
component, �ui, vi, wi � are the displacement components, ak is the coe�cient of linear thermal expansion,
Ckl is the elastic sti�ness constant, Ek is the electric ®eld intensity, Dk is the electric displacement, f is
the electric potential, ekl is the piezoelectric coe�cient, Zkl is the dielectric constant, pz is the pyroelectric
constant, d1 is the piezoelectric modulus and a0 and Y0 are the typical values of the coe�cient of linear
thermal expansion and Young's modulus of elasticity, respectively. And li and mi are Lame's constants.
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In the case of FGM plate, the stress±strain relations for the ith layer are expressed in dimensionless
form as follows:8>>>>>><>>>>>>:

�sxxi
�syyi
�szzi
�syzi
�szxi
�sxyi

9>>>>>>=>>>>>>;
�

266666664

�li � 2 �ui �li �li 0 0 0
�li �li � 2 �mi �li 0 0 0
�li �li �li � 2 �mi 0 0 0
0 0 0 �mi 0 0
0 0 0 0 �mi 0
0 0 0 0 0 �mi

377777775

8>>>>>>><>>>>>>>:

�exxi ÿ �ai �Ti

�eyyi ÿ �ai �Ti

�ezzi ÿ �ai �Ti

�gyzi
�gzxi
�gxyi

9>>>>>>>=>>>>>>>;
; i � 1, . . . ,n �27�

In the case of the piezoelectric plate, the stress±strain relations are expressed in dimensionless form as
follows:8>>>>>><>>>>>>:

�sxxi
�syyi
�szzi
�syzi
�szxi
�sxyi

9>>>>>>=>>>>>>;
�

266666664

�C11
�C12

�C13 0 0 0
�C12

�C22
�C23 0 0 0

�C13
�C23

�C33 0 0 0
0 0 0 �C44 0 0
0 0 0 0 �C55 0
0 0 0 0 0 �C66

377777775

8>>>>>>><>>>>>>>:

�exxi ÿ �ax �Ti

�eyyi ÿ �ay �Ti

�ezzi ÿ �az �Ti

�gyzi
�gzxi
�gxyi

9>>>>>>>=>>>>>>>;
ÿ

26666664
0 0 �e31
0 0 �e32
0 0 �e33
0 �e24 0
�e15 0 0
0 0 0

37777775
8<:

�Ex
�Ey
�Ez

9=;;

i � n� 1

�28�

The constitutive equations for the electric ®eld are

�Dx � �e15 �gzx � �Z11 �Ex, �Dy � �e24 �gyz � �Z22 �Ey, �Dz � �e31�exx � �e32�eyy � �e33�ezz � �Z33 �Ez � �pz �Tn�1 �29�

The relations between the electric ®eld intensities and the electric potential f are de®ned by

�Ex � ÿ �f, �x, �Ey � ÿ �f, �y, �Ez � ÿ �f, �z �30�

where a comma denotes partial di�erentiation with respect to the variable it follows. If the free charge is
absent, the equation of electrostatics is expressed in dimensionless form as follows:

�Dx, �x � �Dy, �y � �Dz, �z � 0 �31�

The displacement±strain relations for the ith layer are expressed in dimensionless form as follows:

�exxi � �ui, �x, �eyyi � �ni, �y, �ezzi � �wi, �z

�gxyi � �ui, �y � �ni, �x, �gyzi � �ni, �z � �wi, �y, �gzxi � �ui, �z � �wi, �x; i � 1, . . . ,�n� 1� �32�

The equilibrium equations for the ith layer are expressed in dimensionless form as follows:

�sxxi, �x � �sxyi, �y � �szxi, �z � 0, �sxyi, �x � �syyi, �y � �syzi, �z � 0

�szxi, �x � �syzi, �y � �szzi, �z � 0; i � 1, . . . ,�n� 1� �33�

In the case of FGM plate, substituting Eq. (32) into Eq. (27), and later into Eq. (33), the displacement
equations of equilibrium are written as
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ÿ
�li � 2 �mi

�
�ui, xx � �mi

ÿ
�ui, yy � �ui, zz

�� ÿ�li � �mi
�ÿ

�ni, xy � �wi, xz

� � ÿ3�li � 2 �mi
�
�ai �Ti, �x

ÿ
�li � �mi

�ÿ
�ui, xy � �wi, yz

�� �mi
ÿ
�ni, xx � �ni, zz

�� ÿ�li � 2 �mi
�
�ni, yy �

ÿ
3�li � 2 �mi

�
�ai �Ti, �y

ÿ
�li � �mi

�ÿ
�ui, xz � �ni, yz

�� �mi
ÿ

�wi, xx � �wi, yy

�� ÿ�li � 2 �mi
�

�wi, zz �
ÿ
3�li � 2 �mi

�
�ai �Ti, �z; i � 1, . . . ,n �34�

In the case of the piezoelectric plate, substituting Eqs. (30) and (32) into Eq. (28), and later into Eqs.
(31) and (33), the governing equations of the displacement components and the electric potential f in
dimensionless form are written as

�C11 �un�1, xx � �C66 �un�1, yy � �C55 �un�1, zz �
ÿ

�C12 � �C66

�
�nn�1, xy �

ÿ
�C13 � �C55

�
�wn�1, xz � � �e31

� �e15 � �f, xz �
�

�C11 �ax � �C12 �ay � �C13 �az
�

�Tn�1, �xÿ
�C66 � �C12

�
�un�1, xy � �C66 �nn�1, xx � �C22 �nn�1, yy � �C44 �nn�1, zz

�
ÿ

�C23 � �C44

�
�wn�1, yz � �e32 � �e24 � �f, yz �

�
�C12 �ax � �C22 �ay � �C23 �az

�
�Tn�1, �yÿ

�C13 � �C55

�
�un�1, xz �

ÿ
�C44 � �C23

�
�nn�1, yz � �C55 �wn�1, xx

� �C44 �wn�1, yy � � �C33 � �wn�1, zz � � �e15 � �f, xx � �e24 �f, yy � �e33 �f, zz �
�

�C13 �ax � �C23 �ay � �C33 �az
�

�Tn�1, �z

� �e15 � �e31 � �un�1, xz � � �e24 � �e32 ��nn�1, yz � �e15 �wn�1, xx

� �e24 �wn�1, yy � �e33 �wn�1, zz ÿ �Z11 �f, xx ÿ �Z22 �f, yy ÿ �Z33 �f, zz � ÿ �pz �Tn�1, �z

�35�

If the bottom and top surfaces of the combined plate are traction free, and the interfaces of each layer
are perfectly bonded, then the boundary conditions of bottom and top surfaces and the conditions of
continuity at the interfaces can be represented as follows:

�z1 � 0; �szz1 � 0, �szx1 � 0, �syz1 � 0

�zi � �bi, �zi�1 � 0; �szzi � �szz, i�1, �szxi � �szx, i�1, �syzi � �syz, i�1

�ui � �ui�1, �ni � �ni�1, �wi � �wi�1; i � 1, . . . ,n

�zn�1 � �b; �szz, n�1 � 0, �szx, n�1 � 0, �syz, n�1 � 0 �36�
The boundary conditions in the thickness direction for the electric ®eld are expresses by

�zn�1 � 0; �f � 0

�zn�1 � �b ; �Dz � 0 �37�

Y. Ootao, Y. Tanigawa / International Journal of Solids and Structures 37 (2000) 4377±4401 4385



We now consider the case of a simply supported plate and assume that the end surfaces of piezoelectric
rectangular plate are electrically grounded. The boundary conditions are given as follows:

�x �2 �Lx; �sxxi � 0, �vi � 0, �wi � 0, �f � 0

�y �2 �Ly; �syyi � 0, �ui � 0, �wi � 0, �f � 0 �38�

The boundary conditions (38) are satis®ed automatically if the displacement components and electric
potential are given the following forms:

�ui �
X1
k�1

X1
l�1

�
Ucikl� �zi � �Upikl� �zi �

�
sin qk �xcos sl �y

�vi �
X1
k�1

X1
l�1

�
Vcikl� �zi � � Vpikl� �zi �

�
cos qk �xsin sl �y

�wi �
X1
k�1

X1
l�1

�
Wcikl� �zi � �Wpikl� �zi �

�
cos qk �xcos sl �y; i � 1, . . . ,�n� 1�

�f �
X1
k�1

X1
l�1

�
Fckl� �zn�1� � Fpkl� �zn�1�

�
cos qk �xcos sl �y �39�

In expressions (39), the ®rst term of right-hand side shows the homogeneous solution of Eq. (34) or Eq.
(35) and the second term of right-hand side shows the particular solution of Eq. (34) or (35).

In the case of FGM plate, Ucikl� �zi �, Vcikl� �zi � and Wcikl� �zi � are given by the following expressions
(Pagano, 1970):

Ucikl� �zi � �
�
a
�i�
11 � a

�i�
31 �zi � a

�i�
51 �z2i

�
exp�rkl �zi � �

�
a
�i�
21 � a

�i�
41 �zi � a

�i�
61 �z2i

�
exp� ÿ rkl �zi �

Vcikl� �zi � �
�
a
�i�
12 � a

�i�
32 �zi � a

�i�
52 �z2i

�
exp�rkl �zi � �

�
a
�i�
22 � a

�i�
42 �zi � a

�i�
62 �z2i

�
exp� ÿ rkl �zi �

Wcikl� �zi � �
�
a
�i�
13 � a

�i�
33 �zi � a

�i�
53 �z2i

�
exp�rkl �zi � �

�
a
�i�
23 � a

�i�
43 �zi � a

�i�
63 �z2i

�
exp� ÿ rkl �zi �; i � l, . . . ,n �40�

In the above expressions (40), a
�i �
kl are unknown constants and the following relations among these

constants exist

a
�i�
5l � a

�i�
6l � 0; l � 1, 2, 3

a
�i�
32 �

sl
qk

a
�i�
31, a

�i�
33 � ÿ

rkl
qk

a
�i�
31, a

�i�
42 �

sl
qk

a
�i�
41, a

�i�
43 �

rkl
qk

a
�i�
41
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a
�i�
31 �

qk
ÿ
�li � �mi

�
rkl
ÿ
�li � 3 �mi

��qka�i�11 � sla
�i�
12 � rkla

�i�
13

�

a
�i�
41 � ÿ

qk
ÿ
�li � �mi

�
rkl
ÿ
�li � 3 �mi

��qka�i�21 � sla
�i�
22 ÿ rkla

�i�
23

�
; i � l, . . . ,n �41�

In the case of the piezoelectric plate, Ucikl� �zi �, Vcikl� �zi �, Wcikl� �zi � and �Fckl� �zi � are given based on
Heyliger's solution (Heyliger, 1997). Assuming that�

Ucikl� �zi �, Vcikl� �zi �,Wcikl� �zi �, Fckl� �zi �
	 � ÿU 0

ckl, V
0
ckl, W

0
ckl, F

0
ckl

�
exp�p �zi �; i � n� 1 �42�

and substituting the homogeneous solution into the homogeneous form of Eq. (35) leads to the next
equations.26664

A11 ÿ �C55p
2 A12 A13p A14p

A12 A22 ÿ �C44p
2 A23p A24p

ÿA13p ÿA23p A33 ÿ �C33p
2 A34 ÿ �e33p

2

ÿA14p ÿA24p A34 ÿ �e33p
2 A44 � �Z33p

2

37775
8>><>>:
U 0

ckl

V 0
ckl

W 0
ckl

F0
ckl

9>>=>>; �
8>><>>:
0
0
0
0

9>>=>>; �43�

where

A11 � �C11q
2
k � �C66s

2
l , A12 �

ÿ
�C12 � �C66

�
qksl, A13 �

ÿ
�C13 � �C55

�
qk, A14 � � �e31 � �e15 �qk

A22 � �C66q
2
k � �C22s

2
l , A23 �

ÿ
�C23 � �C44

�
sl, A24 � � �e32 � �e24 �sl, A33 � �C55q

2
k � �C44s

2
l

A34 � �e15q
2
k � �e24s

2
l , A44 � ÿ

ÿ
�Z11q

2
k � �Z22s

2
l

� �44�

Non-trivial solutions of Eq. (43) exist if the determinant of the coe�cient vanishes, which leads to the
eighth-order equation of p. This equation can be written as the fourth-order equation

r4 � cr3 � dr2 � er� f � 0 �45�

where

r � p2

c � 1

A

n
�Z33
h

�C44

�
A11

�C33 ÿ A2
13

�
� �C55

�
A33

�C44 � A22
�C33 ÿ A2

23

�i
� �e233

ÿ
A11

�C44 � A22
�C55

�
� 2 �e33

�
�C55

ÿ
A34

�C44 ÿ A23A24

�
ÿ A13A14

�C44

�
� �C33

�
�C55

ÿ
A2

24 ÿ A44
�C44

�
� A2

14
�C44

�o
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d � 1

A

�
�Z33
h
A11A

2
23 � A2

13A22 ÿ 2A12A23A13 ÿ A33

ÿ
A11

�C44 � A22
�C55

�
� �C33

ÿ
A2

12 ÿ A11A22

�i
� 2 �e33

ÿ
A13A22A14 � A11A23A24 ÿ A12A23A14 ÿ A12A24A13 ÿ A11A34

�C44 ÿ A22A34
�C55

�
� �e233

ÿ
A2

12

ÿ A11A22

�
� �C55

�
2A23A24A34 � A22A44

�C33 � A33A44
�C44 ÿ A2

23A44 ÿ A2
24A33 ÿ A2

34
�C44

�
� �C44

�
A11A44

�C33 ÿ A2
13A44 � 2A13A14A34 ÿ A2

14A33

�
� �A13A24 ÿ A14A23�2

�

e � 1

A

nÿ
A11A22 ÿ A2

12

�ÿ
�Z33A33 � 2 �e33A34 ÿ �C33A44

�
� ÿA2

34 ÿ A33A44

�ÿ
�C55A22 � �C44A11

�
� 2

�
A12A24�A13A34 ÿ A14A33� � A12A23�A14A34 ÿ A13A44 � ÿ A34�A11A23A24 � A13A22A14�

�
� A33

ÿ
A11A

2
24 � A2

14A22

�� A44

ÿ
A2

13A22 � A11A
2
23

�o

f � 1

A

ÿ
A34A44 ÿ A2

34

�ÿ
A11A22 ÿ A2

12

�
A � ÿ �C55

�C44

�
�C33 �Z33 � �e233

�
�46�

From Eq. (45), there might be four real roots, two real roots and one pair of conjugate complex roots,
or two pairs of conjugate complex roots.

Case 1 (Real roots for r). Given N real roots for r, Ucikl� �zi �,Vcikl� �zi �, Wcikl� �zi � and Fckl� �zi � are given by
the following expressions:

Ucikl� �zi � �
XN
J�1

UklJ� �zi �, Vcikl� �zi � �
XN
J�1

LklJUklJ� �zi �

Wcikl� �zi � �
XN
J�1

MklJWklJ� �zi �, Fckl� �zi � �
XN
J�1

NklJWklJ� �zi �; i � n� 1 �47�

where

UklJ� �zi � � FklJCklJ� �zi � � GklJSklJ� �zi �

WklJ� �zi � � GklJCklJ� �zi � � aklJFklJSklJ� �zi � �48�

LklJ � 1

DJ

ÿ
f11m

4
J � aklJf12m2

J � f13
�
, MklJ � mJ

DJ

ÿ
f21m

4
J � aklJf22m2

J � f23
�

NklJ � mJ

DJ

ÿ
f31m

4
J � aklJf32m2

J � f33
�
, DJ � aklJg1m6

J � g2m
4
J � aklJg3m2

J � g4 �49�
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CklJ� �zi � � cosh�mJ �zi �, SklJ� �zi � � sinh�mJ �zi �, mJ � ����
rJ
p

, aklJ � 1 if rJ > 0

CklJ� �zi � � cos�mJ �zi �, SklJ� �zi � � sin�mJ �zi �, mJ � ��������ÿrJp
, aklJ � ÿ1 if rJ < 0 �50�

Here FklJ and GklJ are unknown constants. Expressions for the coe�cients in Eq. (49) are given in
Appendix A.

Case 2 (Complex roots for r). If the complex root for r is expressed by rJ � aJ2jbJ where j � �������ÿ1p
,

then the ®nal roots for p are

pJ �2�aJ � jbJ� �51�

where

aJ �
�
a2J � b2J

�1=4
cos

�
1

2

�
tanÿ1

bJ
aJ

��
, bJ �

�
a2J � b2J

�1=4
sin

�
1

2

�
tanÿ1

bJ
aJ

��
�52�

Given J 0 pairs of complex roots for r, Ucikl� �zi �, Vcikl� �zi �, Wcikl� �zi � and Fckl� �zi � are given by the following
expressions:

Ucikl� �zi � �
XJ 0
J�1

UklJ� �zi �, Vcikl� �zi � �
XJ 0
J�1

VklJ� �zi �

Wcikl� �zi � �
XJ 0
J�1

WklJ� �zi �, Fckl� �zi � �
XJ 0
J�1

FklJ� �zi �; i � n� 1 �53�

where

UklJ� �zi � � C1Jexp
ÿ
aJ �zj

�
cos bJ �zi � C2Jexp�aJ �zi �sin bJ �zi � C3Jexp� ÿ aJ �zi �cos bJ �zi � C4Jexp� ÿ aJ �zi �

� sin bJ �zi

VklJ� �zi � � C1Jexp�aJ �zi ��G1Jcos bJ �zi ÿ O1Jsin bJ �zi � � C2Jexp�aJ �zi ��O1Jcos bJ �zi � G1Jsin bJ �zi � � C3Jexp�

ÿ aJ �zi ��G1Jcos bJ �zi � O1Jsin bJ �zi � � C4Jexp� ÿ aJ �zi �� ÿ O1Jcos bJ �zi � G1Jsin bJ �zi �

WklJ� �zi � � C1Jexp�aJ �zi �
��aJG2J ÿ bJO2J �cos bJ �zi ÿ �bJG2J � aJO2J�sin bJ �zi

�� C2Jexp�aJ �zi �
��bJG2J

� aJO2J�cos bJ �zi � �aJG2J ÿ bJO2J�sin bJ �zi
�� C3Jexp� ÿ aJ �zi �

��bJO2J ÿ aJG2J�cos bJ �zi

ÿ �bJG2J � aJO2J�sin bJ �zi
�� C4Jexp� ÿ aJ �zi �

��bJG2J � aJO2J�cos bJ �zi � � ÿ aJG2J � aJO2J�
� sin bJ �zi

�
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FklJ� �zi � � C1Jexp�aJ �zi �
��aJG3J ÿ bJO3J �cos bJ �zi ÿ �bJG3J � aJO3J�sin bJ �zi

�� C2Jexp�aJ �zi �
��bJG3J

� aJO3J �cos bJ �zi � �aJG3J ÿ bJO3J�sin bJ �zi
�� C3Jexp� ÿ aJ �zi �

��bJO3J ÿ aJG3J�cos bJ �zi

ÿ �bJG3J � aJO3J�sin bJ �zi
�� C4Jexp� ÿ aJ �zi �

��bJG3J � aJO3J �cos bJ �zi � � ÿ aJG3J

� bJO3J �sin bJ �zi
� �54�

GIJ � Re

"
1

D�pJ�
ÿ
fI1p

4
J � fI2p

2
J � fI3

�jpJ�aJ�jbJ
#

OIJ � Im

"
1

D�pJ�
ÿ
fI1p

4
J � fI2p

2
J � fI3

�jpJ�aJ�jbJ
#
; I � 1, 2, 3

D�pJ� � g1p
6
J � g2p

4
J � g3p

2
J � g4 �55�

Here C1J±C4J are unknown constants.

On the other hand, Upikl� �zi �, Vpikl� �zi �, Wpikl� �zi � and Fpkl� �zi � of the particular solutions are obtained as
follows:

Upikl� �zi � � A1iklcosh rkl �zi � A2iklsinh rkl �zi �
Xm
j�1

�
A
�j�
3iklcosh bij �zi � A

�j�
4iklsinh bij �zi

�
�

X1
j�m�1

�
A
�j�
5iklcos gij �zi

� A
�j�
6iklsin gij �zi

�

Vpikl� �zi � � B1iklcosh rkl �zi � B2iklsinh rkl �zi �
Xm
j�1

�
B
�j�
3iklcosh bij �zi � B

�j�
4iklsinh bij �zi

�
�

X1
j�m�1

�
B
�j�
5iklcos gij �zi

� B
�j�
6iklsin gij �zi

�

Wpikl� �zi � � C1iklcosh rkl �zi � C2iklsinh rkl �zi �
Xm
j�1

�
C
�j�
3iklcosh bij �zi � C

�j�
4iklsinh bij �zi

�
�

X1
j�m�1

�
C
�j�
5ikl

� cos gij �zi � C
�j�
6iklsin gij �zi

�
; i � 1, . . . ,�n� 1�

Fpkl� �zn�1� � D1klcosh rkl �zn�1 �D2klsinh rkl �zn�1 �
Xm
j�1

h
D
�j�
3klcosh bn�1, j �zn�1 �D

�j�
4kl

� sinh bn�1, j �zn�1
i
�

X1
j�m�1

h
D
�j�
5klcos gn�1, j �zn�1 �D

�j�
6klsin gn�i, j �zn�1

i �56�
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In the case of FGM plate, substituting Eqs. (20), (56) and the second term of right-hand side of Eq. (39)
into Eq. (34), and later comparing the coe�cients of functions with regard to �zi respectively, the six
groups of simultaneous linear equations for �A1ikl, B1ikl, C2ikl�, �A2ikl, B2ikl, C1ikl�, �A�j �3ikl, B

�j �
3ikl, C

�j �
4ikl�,

�A�j �4ikl, B �j �4ikl, C �j �3ikl�, �A�j �5ikl, B �j �5ikl, C �j �6ikl� and �A�j �6ikl, B �j �6ikl, C �j �5ikl� are obtained. Solving these six groups of
simultaneous linear equations, the constants A1ikl, A2ikl, . . . ,C

�j �
5ikl, and C

�j �
6ikl �i � 1, . . . ,n� can be obtained.

And, in the case of the piezoelectric plate, substituting Eqs. (20), (56) and the second term of right-hand
side of Eq. (39) into Eq. (35), and later comparing the coe�cients of functions with regard to �zi,
respectively, the six groups of simultaneous linear equations for �A1ikl, B1ikl, C2ikl, D2kl�, �A2ikl, B2ikl,
C1ikl, D1kl�, �A�j �3ikl, B �j �3ikl, C �j �4ikl, D�j �4kl�, �A�j �4ikl, B �j �4ikl, C �j �3ikl, D�j �3kl�, �A�j �5ikl, B �j �5ikl, C �j �6ikl, D�j �6kl� and �A�j �6ikl, B �j �6ikl,
C
�j �
5ikl, D

�j �
5kl� are obtained. Solving these six groups of simultaneous linear equations, the constants A1ikl,

A2ikl, . . ., C
�j �
5ikl, C

�j �
6ikl �i � n� 1�, D1kl, D2kl, D

�j �
3kl, D

�j �
4kl, D

�j �
5kl and D

�j �
6kl can be obtained. Then, in the case

of FGM plate, the stress components can be evaluated by substituting Eq. (39) into Eq. (32), and later
into Eq. (27). In the case of the piezoelectric plate, the stress components and the electric displacements
can be evaluated by substituting Eq. (39) into Eqs. (30) and (32), and later into Eqs. (28) and (29).

Then the unknown constants in Eqs. (40), (48) and (54) are determined so as to satisfy the boundary
conditions (36) and (37).

5. Numerical results

As there are many cases like the thermal, elastic and electric constants for crystal class mm2 don't
become clear in the literature, we consider the piezoelectric material of a cadmium selenide solid
exhibiting crystal class 6mm which is quoted at the papers of Ashida et al. (1996, 1997). Furthermore,
we consider the FGM composed of zirconium oxide (ZrO2) and titanium alloy (Ti±6Al±4V) which is
anticipated as a high-temperature-resistant structural material for thermal stress relaxation in the ®eld of
aerospace. It is assumed that the volume fractions of the ceramic phase Vc and the metal phase Vm are
given by the relations

Vc� �z� �
�
1ÿ �zM; Mr1
�1ÿ �z�1=M; MR1

�
, Vm� �z� � 1ÿ Vc� �z�; 0R �zR1 �57�

where M is a parameter. And, numerical results are presented for the following values.

Fig. 2. Variation of volume fraction Vc.
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Ha � Hb � 5:0, �Ta � 1:0, �Lx � �Ly � 3:0, �b � 0:1, 0:2, 0:3

fa� �x� �
ÿ
1ÿ �x2= �x20

�
H� �x0 ÿ j �xj�, ga� �y� �

ÿ
1ÿ �y2= �y20

�
H
ÿ

�y0 ÿ j �yj
�

�x0 � 1:0, �y0 � 1:0, M � 1, 1=4, 4 �58�
where H�x� is Heaviside's function. The variation of the volume fraction Vc of the ceramic with the
parameter M is shown in Fig. 2. The material constants for zirconium oxide are taken as,

lt � 1:78 W=mK, k � 1:06� 10ÿ6 m2=s, a � 8:7� 10ÿ6 1=K, Y � 116:4 GPa, n � 0:33 �59�
for titanium alloy,

lt � 6:2 W=mK, k � 2:61� 10ÿ6 m2=s, a � 8:9� 10ÿ61=K, Y � 105:8 GPa, n � 0:3 �60�

Fig. 3. Temperature change for parameter M � 1: (a) variation on the x-axis � �y � 0, �z � 0), (b) variation in the thickness direction

� �x � 0, �y � 0).
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and for cadmium selenide (Ashida et al., 1997),

ax � ay � 4:396� 10ÿ6 1=K, az � 2:458� 10ÿ6 1=K, C11 � C22 � 74:1 GPa

C12 � 45:2 GPa, C13 � C23 � 39:3 GPa, C33 � 83:6 GPa, C44 � C55 � 13:17 GPa

C66 � 14:45 GPa, e31 � e32 � ÿ0:16 C=m2, e33 � 0:347 C=m2,

e15 � e24 � ÿ0:138 C=m2, Z11 � Z22 � 8:25� 10ÿ11 C2=Nm2, Z33 � 9:03� 10ÿ11 C2=Nm2

pz � ÿ2:94� 10ÿ6 C=m2K, d1 � ÿ3:92� 10ÿ12 C=N

Fig. 4. Thermal displacement �w for parameter M � 1: (a) variation on the x-axis � �y � 0, �z � 0), (b) variation in the thickness direc-

tion � �x � 0, �y � 0).
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ltx � lty � 8:6 W=mK, ltz � 1:5ltx �61�

Since the coe�cients of thermal conductivity for cadmium selenide could not be found in the literature,
the following values are assumed:

kx � ky � 3:28� 10ÿ6 m2=s, kz � 1:5kx �62�

The typical values of material properties such as k0, lt0, a0 and Y0 used to normalize the numerical
data, are based on those of zirconium oxide. To estimate the material properties of FGM, we applied
mainly the law of mixture proposed by Kerner (1956a, 1956b), which was derived based on the
assumption that there is a granular phase embedded in a matrix phase. However, the details of
expression for the law are omitted here for brevity. For numerical calculation, we take n � 10 as the
number of hypothetical layers in the FGM plate.

Figs. 3±9 show the numerical results for M � 1 and �b � 0:1:The variations of temperature change and
thermal displacement �w on the x-axis � �y � 0, �z � 0� are shown in Figs. 3(a) and 4(a). The variations of

Fig. 5. Variation of the thermal stress �syy for parameter M � 1 � �x � 0, �y � 0).

Fig. 6. Variation of the thermal stress �szz for parameter M � 1 � �x � 0, �y � 0).
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the thickness direction of temperature change and thermal displacement �w at the midpoint of the plate
are shown in Figs. 3(b) and 4(b). As shown in Fig. 3, the temperature rises as the time proceeds and is
maximum in the steady state, and the temperature rise can clearly be seen in the heated region. As
shown in Fig. 4, the absolute value of thermal displacement �w rises as the time proceeds and shows the
maximum value in the steady state. Fig. 5 and Fig. 6 show the variations of the normal stress �syy and
�szz at the midpoint of the plate, respectively. As shown in Fig. 5, it can be seen that discontinuity occurs
on the interface between FGM plate and piezoelectric plate. As shown in Fig. 6, it can be seen that the
stress variation becomes substantial with the progress of time and maximum tensile stress occurs in a
transient state. Fig. 7 shows the distribution of the shearing stress �szx: The distribution on the cross-
section of �y � 0 in the steady state is shown in Fig. 7(a) and the variation on the cross section � �x �
0:8, �y � 0� in a transient state is shown in Fig. 7(b). Fig. 7(a) shows that the maximum stress occurs
near �x � 0:8 inside of plate. From Fig. 7(b), it can be seen that the shearing stress �szx shows the

Fig. 7. Thermal stress �szx for parameter M � 1: (a) distribution in a steady state � �y � 0, t � 1), (b) variation in the thickness

direction � �x � 0:8, �y � 0).
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maximum value at z � 0:15 in a transient state. Figs. 8 and 9 show the variations of the electric

potential and the electric displacement �Dx on the top surface � �y � 0, �z � 1:1), respectively. From Figs. 8

and 9, it can be seen that the variations become substantial with the progress of time and maximum

value occurs in a transient state.

In order to examine the in¯uence of the parameter M of the material composition, the variations of

temperature change, thermal stress �szz, thermal stress �szx, and electric potential for �b � 0:1 are shown in

Figs. 10±13, respectively. From Fig. 10, it can be seen that the temperature change on the heated side of

the plate is decreased when the parameter M reduces. As shown in Figs. 11 and 12, it can be seen that

the maximum values of the normal stress �szz and shearing stress �szx and their distributions are

substantially changed when the parameter M is changed. Then, it can be seen from Fig. 13 that the

maximum values of the electric potential are decreased when the parameter M reduces.

Fig. 8. Variation of the electric potential for parameter M � 1:

Fig. 9. Variation of the electric displacement �Dx for parameter M � 1:
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Fig. 14 shows the in¯uence of thickness �b of piezoelectric plate on electric potential on the top surface
� �y � 0, �z � 1� �b). Then, it can be seen from Fig. 14 that the value of the electric potential is increased
when the thickness �b increases.

Finally, in order to assess the in¯uence of the functional grading, the numerical results for the
homogeneous plate composed of zirconium oxide and the piezoelectric plate composed of a cadmium
selenide solid for �b � 0:1 are shown in Fig. 15. The variations of the thickness direction of temperature
change and normal stress �szz at the midpoint of the plate are shown in Fig. 15(a) and (b), respectively.
The variation of shearing stress �szx on the cross section � �x � 0:8, �y � 0� is shown in Fig. 15(c). From
Figs. 11, 12, 15(a) and (c), it is possible to decrease the maximum values of normal stress �szz and
shearing stress �szx in a transient state by the functional grading.

Fig. 10. In¯uence of parameter M on temperature change � �x � 0, �y � 0).

Fig. 11. In¯uence of parameter M on thermal stress �szz � �x � 0, �y � 0).
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Fig. 12. In¯uence of parameter M on thermal stress �szx � �x � 0:8, �y � 0).

Fig. 13. In¯uence of parameter M on electric potential.

Fig. 14. In¯uence of thickness �b of piezoelectric plate on electric potential.
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Fig. 15. Results for combined plate composed of homogeneous material and piezoelectric material. (a) Temperature change

� �x � 0, �y � 0,), (b) Thermal stress �szz � �x � 0, �y � 0), (c) Thermal stress �szx � �x � 0:8, �y � 0).
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6. Conclusions

In this study, we analyzed the three-dimensional transient piezothermoelasticity problem involving a
functionally graded rectangular plate bonded to a piezoelectric plate of crystal class mm2 due to partial
heat supply. As an illustration, we carried out numerical calculations for the functionally graded plate
composed of zirconium oxide and titanium alloy, bonded to a piezoelectric plate of a cadmium selenide
solid and examined the behaviors in the transient state for the temperature change, the displacement, the
stress, electric potential, and electric displacement distributions. We conclude that we can evaluate not
only all stresses of the combined plate but also the electric ®eld of the piezoelectric plate quantitatively
in a transient state.

Appendix A

f11 � A12

�
�C33 �Z33 � �e233

�
ÿ A13

ÿ
A23 �Z33 � A24 �e33

�� A14

ÿ
A24

�C33 ÿ A23 �e33
�

f12 � ÿA12

ÿ
A33 �Z33 ÿ �C33A44 � 2A34 �e33

�
ÿ A13�A23A44 ÿ A24A34 � � A14�A23A34 ÿ A24A33 �

f13 � ÿA12

ÿ
A33A44 ÿ A2

34

�
f21 � ÿA13

�C44 �Z33 ÿ A14
�C44 �e33

f22 � A13

ÿ
A22 �Z33 ÿ A44

�C44 � A2
24

�
ÿ A12

ÿ
A23 �Z33 � A24 �e33

�� A14

ÿ
A22 �e33 � A34

�C44 ÿ A23A24

�
f23 � ÿA12�A23A44 ÿ A24A34 � ÿ A22A34A14 � A22A44A13

f31 � ÿA13
�C44 �e33 � A14

�C44
�C33

f32 � A13

ÿ
A22 �e33 � �C44A34 ÿ A23A24

�
� A12

ÿ
A24

�C33 ÿ A23 �e33
�
� A14

�
A2

23 ÿ A22
�C33 ÿ A33

�C44

�
f33 � A12�A23A34 ÿ A24A33 � � A14A22A33 ÿ A13A22A34 �A1�

g1 � �C44 �e233 � �C33
�C44 �Z33

g2 � �Z33
�
A2

23 ÿ A33
�C44 ÿ A22

�C33

�
ÿ A22 �e233 � 2 �e33

ÿ
A23A24 ÿ A34

�C44

�
� A44

�C44
�C33 ÿ A2

24
�C33

g3 � A22

ÿ
A33 �Z33 ÿ A44

�C33 � 2A34 �e33
�
ÿ 2A23A24A34 � A44

�
A2

23 ÿ �C44A33

�
� A2

24A33 � A2
34

�C44

g4 � A22

ÿ
A33A44 ÿ A2

34

� �A2�
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